Open Research Newcastle
Browse

Dynamic difficulty balancing for cautious players and risk takers

Download (2.65 MB)
journal contribution
posted on 2025-05-09, 11:51 authored by Guy Hawkins, Keith NesbittKeith Nesbitt, Scott BrownScott Brown
Dynamic balancing of game difficulty can help cater for different levels of ability in players. However, performance in some game tasks depends on not only the player's ability but also their desire to take risk. Taking or avoiding risk can offer players its own reward in a game situation. Furthermore, a game designer may want to adjust the mechanics differently for a risky, high ability player, as opposed to a risky, low ability player. In this work, we describe a novel modelling technique known as particle filtering which can be used to model various levels of player ability while also considering the player's risk profile. We demonstrate this technique by developing a game challenge where players are required to make a decision between a number of possible alternatives where only a single alternative is correct. Risky players respond faster but with more likelihood of failure. Cautious players wait longer for more evidence, increasing their likelihood of success, but at the expense of game time. By gathering empirical data for the player's response time and accuracy, we develop particle filter models. These models can then be used in real-time to categorise players into different ability and risk-taking levels.

History

Journal title

International Journal of Computer Games Technology

Volume

2012

Pagination

1-10

Publisher

Hindawi

Language

  • en, English

College/Research Centre

Faculty of Science and Information Technology

School

School of Psychology

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC