Open Research Newcastle
Browse

Do ENSO and coastal development enhance coastal burial of terrestrial carbon?

Download (2.24 MB)
journal contribution
posted on 2025-05-10, 12:13 authored by Peter I. Macreadie, Timothy C. Rolph, Ronald BoydRonald Boyd, Claudia J. Schröder-Adams, Charles G. Skilbeck
Carbon cycling on the east coast of Australia has the potential to be strongly affected by El Niño-Southern Oscillation (ENSO) intensification and coastal development (industrialization and urbanization). We performed paleoreconstructions of estuarine sediments from a seagrass-dominated estuary on the east coast of Australia (Tuggerah Lake, New South Wales) to test the hypothesis that millennial-scale ENSO intensification and European settlement in Australia have increased the transfer of organic carbon from land into coastal waters. Our data show that carbon accumulation rates within coastal sediments increased significantly during periods of maximum millennial-scale ENSO intensity ("super-ENSO") and coastal development. We suggest that ENSO and coastal development destabilize and liberate terrestrial soil carbon, which, during rainfall events (e.g., La Niña), washes into estuaries and becomes trapped and buried by coastal vegetation (seagrass in this case). Indeed, periods of high carbon burial were generally characterized as having rapid sedimentation rates, higher content of fine-grained sediments, and increased content of wood and charcoal fragments. These results, though preliminary, suggest that coastal development and ENSO intensification--both of which are predicted to increase over the coming century--can enhance capture and burial of terrestrial carbon by coastal ecosystems. These findings have important relevance for current efforts to build an understanding of terrestrial-marine carbon connectivity into global carbon budgets.

History

Journal title

PLoS One

Volume

10

Issue

12

Publisher

Public Library of Science (PLoS)

Language

  • en, English

College/Research Centre

Faculty of Science and Information Technology

School

School of Environmental and Life Sciences

Rights statement

Copyright: © 2015 Macreadie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC