Current control in inverter-driven machine systems is the inner most component of the hierarchy of control loops. If the control of current in the machine is not fast and accurate then it is difficult, if not impossible, to build a high-performance drive system. Unfortunately, the implementation of current control in power electronic systems is not ideal. Practical effects can have a significant influence on its performance. This paper examines one of these effects, dead time, and considers the influence it has on the performance of predictive current controllers (PCCs). The paper presents analysis that shows that a PCC implicitly compensates for voltage loss due to dead time. Also, a modified PCC is introduced that reduces the zero-current-clamp problem caused by dead time. Simulation and experimental results are presented to verify the analysis and confirm the performance of the new algorithm.
History
Journal title
IEEE Transactions on Industry Applications
Volume
40
Issue
3
Pagination
835-844
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Language
en, English
College/Research Centre
Faculty of Engineering and Built Environment
School
School of Electrical Engineering and Computer Science