Open Research Newcastle
Browse

Controller design for partial decoupling of linear multivariable systems

Download (216.42 kB)
journal contribution
posted on 2025-05-08, 18:44 authored by Steven WellerSteven Weller, G. C. Goodwin
In the design of feedback control systems for linear multivariable plants, insisting on the elimination of coupling in closed-loop is often achieved at the expense of an increase in the multiplicity of infinite and non-minimum phase zeros beyond those of the plant plant. This behaviour is known as the 'cost of decoupling' since these additional zeros are manifested in the time domain by increased rise times and undershoots in step responses. Using partially decoupling controllers, however, it is always possible to obtain closed-loop systems with precisely the same number of infinite and non-minimum phase zeros as the plant, albeit at the expense of a restricted form of transient coupling. This paper uses a generalization of the interactor matrix to generate a class of partially decoupling controllers for square, stable plants in which diagonal decoupling arises as a special case, thereby permitting the designer to trade off speed of response versus the severity of transient interaction.

History

Journal title

International Journal of Control

Volume

63

Issue

3

Pagination

535-556

Publisher

Taylor & Francis Ltd.

Language

  • en, English

College/Research Centre

Faculty of Engineering and Built Environment

School

School of Engineering

Rights statement

This is an electronic version of an article published in International Journal of Control Vol. 63, Issue 3, p. 535-556. International Journal of Control is available online at: http://www.tandfonline.com/openurl?genre=article&issn=0020-7179&volume=63&issue=3&spage=535

Usage metrics

    Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC