A recent article by Li and Lv considered fully nonlinear contraction of convex hypersurfaces by certain nonhomogeneous functions of curvature, showing convergence to points in finite time in cases where the speed is a function of a degree-one homogeneous, concave and inverse concave function of the principle curvatures. In this article we consider self-similar solutions to these and related curvature flows that are not homogeneous in the principle curvatures, finding various situations where closed, convex curvature-pinched hypersurfaces contracting self-similarly are necessarily spheres.
Funding
ARC
DP180100431
History
Journal title
The Journal of Geometric Analysis
Volume
31
Pagination
6410-6426
Publisher
Springer
Language
en, English
College/Research Centre
Faculty of Science
School
School of Mathematical and Physical Sciences
Rights statement
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s12220-020-00538-4