Open Research Newcastle
Browse

Continuum modelling for interacting coronene molecules with a carbon nanotube

Download (1003.71 kB)
journal contribution
posted on 2025-05-09, 17:50 authored by Kyle Stevens, Thien Tran-Duc, Ngamta ThamwattanaNgamta Thamwattana, James M. Hill
The production of single dimensional carbon structures has recently been made easier using carbon nanotubes. We consider here encapsulated coronene molecules, which are flat and circular-shaped polycyclic aromatic hydrocarbons, inside carbon nanotubes. Depending on the radius of the nanotube, certain specific configurations of the coronene molecules can be achieved that give rise to the formation of stacked columns or aid in forming nanoribbons. Due to their symmetrical structure, a coronene molecule may be modelled by three inner circular rings of carbon atoms and one outer circular ring of hydrogen atoms, while the carbon nanotube is modelled as a circular tube. Using the continuous model and the Lennard-Jones potential, we are able to analytically formulate an expression for the potential energy for a coronene dimer and coronene inside a carbon nanotube. Subsequently, stacking of coronene molecules inside a nanotube is investigated. We find that the minimum energy tilt angle of coronenes in a stack differs from that of a single coronene within the same nanotube. More specifically, for both (18, 0) and (19, 0) zigzag carbon nanotube, we find that the minimum energy tilt angles of the single coronene case (≈42 ∘ and ≈20 ∘ respectively) do not occur in the stack model.

Funding

ARC

DP17010270

History

Journal title

Nanomaterials

Volume

10

Issue

1

Article number

152

Publisher

MDPI AG

Language

  • en, English

College/Research Centre

Faculty of Science

School

School of Mathematical and Physical Sciences

Rights statement

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license http://creativecommons.org/licenses/by/4.0/).

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC