posted on 2025-05-09, 23:42authored byMurray Elder, Jon McCammond, John Meier
Thurston conjectured that a closed triangulated 3-manifold in which every edge has degree 5 or 6, and no two edges of degree 5 lie in a common 2-cell, has word-hyperbolic fundamental group. We establish Thurston's conjecture by proving that such a manifold admits a piecewise Euclidean metric of non-positive curvature and the universal cover contains no isometrically embedded flat planes. The proof involves a mixture of computer computation and techniques from small cancellation theory.