A key hurdle to achieve video-rate atomic force microscopy (AFM) in constant-force contact mode is the inadequate bandwidth of the vertical feedback control loop. This paper describes techniques used to increase the vertical tracking bandwidth of a nanopositioner to a level that is sufficient for video-rate AFM. These techniques involve the combination of: a high-speed XYZ nanopositioner; a passive damping technique that cancels the inertial forces of the Z actuator which in turns eliminates the low 20-kHz vertical resonant mode of the nanopositioner; an active control technique that is used to augment damping to high vertical resonant modes at 60 kHz and above. The implementation of these techniques allows a tenfold increase in the vertical tracking bandwidth, from 2.3 (without damping) to 28.1 kHz. This allows high-quality, video-rate AFM images to be captured at 10 frames/s without noticeable artifacts associated with vibrations and insufficient vertical tracking bandwidth.
History
Journal title
IEEE Transactions on Nanotechnology
Volume
14
Issue
2
Pagination
338-345
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Language
en, English
College/Research Centre
Faculty of Engineering and Built Environment
School
School of Electrical Engineering and Computer Science