In this paper Manning random alloy model has been extended to the binary nonstoichiometric intermetallic compound of the B2 structure. Two sub-lattices, that are dynamically independent in six-jump cycle (6JC) mechanism, are coupled together by taking into consideration the vacancy motion as a sequence of nearest neighbour jumps in random directions. The linear response expressions for the phenomenological transport coefficients are evaluated making use of the kinetic equation approach. The expressions for collective correlation factors are derived in terms of the equilibrium partial atomic concentrations and jump frequencies. Results are compared with Monte Carlo simulation results using the four-frequency model.