Open Research Newcastle
Browse

Characterising microplastics in indoor air: Insights from Raman imaging analysis of air filter samples

Download (7.15 MB)
journal contribution
posted on 2025-05-09, 03:35 authored by Cheng Fang, Olalekan Simon Awoyemi, Saianand Gopalan, Lei Xu, Junfeng Niu, Ravendra NaiduRavendra Naidu
We are directly exposed to microplastic contamination via indoor air that we breathe daily, for which the characterisation of microplastics is still a challenge. Herein, two typical air filter samples were collected, one from an air-conditioner and another from a personal computer, both of which have been working for around half a year to collect and accumulate microplastics in the indoor air, like microplastic banks. After the sample preparation to remove the mineral dusts, Raman imaging was employed to directly and simultaneously identify and visualise microplastics of polyethylene terephthalate (PET) fibres, distinguish them from other fibres such as cellulose and cross-check them with a scanning electron microscope (SEM). To count the microplastics and to avoid the quantification bias, several areas were randomly scanned and imaged to statistically estimate the percentage of microplastic fibres in the analysed samples. The microplastics amount, which has been estimated at 73–88,000 fibers per filter per half a year, varies and depends on the indoor environment so that the air filter can work as a good indicator to monitor the quality of the indoor air from the microplastic perspective. Overall, human are directly exposed to this emerging contamination every day, raising environmental concerns. Raman imaging characterisation and its corresponding statistical information can help pursue further research on microplastics.

History

Journal title

Journal of Hazardous Materials

Volume

464

Issue

15 February 2024

Article number

132969

Publisher

Elsevier

Language

  • en, English

College/Research Centre

College of Engineering, Science and Environment

School

Global Centre for Environmental Remediation (GCER)

Rights statement

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC