Open Research Newcastle
Browse

Cell-free massive MIMO for wireless federated learning

Download (725.54 kB)
journal contribution
posted on 2025-05-09, 17:28 authored by Tung Thanh Vu, Duy NgoDuy Ngo, Nguyen H. Tran, Hien Quoc Ngo, Minh Ngoc Dao, Richard MiddletonRichard Middleton
This paper proposes a novel scheme for cell-free massive multiple-input multiple-output (CFmMIMO) networks to support any federated learning (FL) framework. This scheme allows each instead of all the iterations of the FL framework to happen in a large-scale coherence time to guarantee a stable operation of an FL process. To show how to optimize the FL performance using this proposed scheme, we consider an existing FL framework as an example and target FL training time minimization for this framework. An optimization problem is then formulated to jointly optimize the local accuracy, transmit power, data rate, and users' processing frequency. This mixed-Timescale stochastic nonconvex problem captures the complex interactions among the training time, and transmission and computation of training updates of one FL process. By employing the online successive convex approximation approach, we develop a new algorithm to solve the formulated problem with proven convergence to the neighbourhood of its stationary points. Our numerical results confirm that the presented joint design reduces the training time by up to 55% over baseline approaches. They also show that CFmMIMO here requires the lowest training time for FL processes compared with cell-free time-division multiple access massive MIMO and collocated massive MIMO.

History

Journal title

IEEE Transactions on Wireless Communications

Volume

19

Issue

10

Pagination

6377-6392

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Language

  • en, English

College/Research Centre

Faculty of Engineering and Built Environment

School

School of Electrical Engineering and Computer Science

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC