Open Research Newcastle
Browse

Bifunctional hydrogen production and storage on 0D-1D heterojunction of Cd₀.₅Zn₀.₅S@Halloysites

Download (1.65 MB)
journal contribution
posted on 2025-05-10, 16:45 authored by Sen Lin, Yihe Zhang, Yong You, Chao Zeng, Xue Xiao, Tianyi Ma, Hongwei Huang
Development of efficient solar‐driven hydrogen (H₂) evolution and H₂ storage materials is challenging. Sulfide nanocatalysts show large potential for H₂ production, but suffer from the drawbacks of inefficient charge separation, serious photocorrosion, and easy agglomeration. Herein, a 0D–1D satellite‐core ethylenediaminetetraacetic acid (EDTA)‐bridged Cd0.5Zn0.5S@halloysite nanotubes tertiary structure is designed via facile in situ assembly, which settles all the above‐mentioned issues and achieves exceptional and stable photocatalytic H₂ evolution and storage. Significantly, EDTA grafted on halloysites as the hole (h⁺) traps steers the photogenerated h⁺ and electrons (e−) from Cd0.5Zn0.5S separately to halloysites and outer surface Pt sites, achieving efficient directional separation between h+ and e− and inhibiting the h⁺‐dominated photocorrosion occurring on Cd0.5Zn0.5S. Benefiting from these advantages, the hierarchy shows an unprecedented photocatalytic H₂ evolution rate of 25.67 mmol g⁻¹ h⁻¹ with a recording apparent quantum efficiency of 32.29% at λ = 420 nm, which is seven‐fold that of Cd0.5Zn0.5S. Meanwhile, an H₂ adsorption capacity of 0.042% is achieved with the room temperature of 25°C and pressure of 2.65 MPa. This work provides a new perspective into designing hierarchical structure for H₂ evolution, and proposes an integration concept for H₂ evolution and storage.

History

Journal title

Advanced Functional Materials

Volume

29

Issue

39

Article number

1903825

Publisher

Wiley

Language

  • en, English

College/Research Centre

Faculty of Science

School

School of Environmental and Life Sciences

Rights statement

This is the peer reviewed version of the following article: Lin, S., Zhang, Y. & You, Y. et al. (2019) Bifunctional hydrogen production and storage on 0D-1D heterojunction of Cd₀.₅n₀.₅S@Halloysites, Advanced Functional Materials, 29 (39) 1903825 which has been published in final form at: http://dx.doi.org/ 10.1002/adfm.201903825. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC