Open Research Newcastle
Browse

Assessing the effectiveness of long-term monitoring of the Broad-toothed Rat in the Barrington Tops National Park, Australia

Download (478.98 kB)
journal contribution
posted on 2025-05-11, 20:01 authored by Charlotte Alley, Peter Beard, John ClulowJohn Clulow, Andrea GriffinAndrea Griffin, Adam Fawcett, Geoffrey James, Matthew HaywardMatthew Hayward
Biodiversity monitoring is crucial for effective conservation efforts. Effective monitoring allows managers to determine the status and trends of biodiversity, as well as the success of conservation actions. The population of the Broad-toothed Rats (Mastacomys fuscus) in the Barrington Tops National Park New South Wales, Australia has been monitored since 1999 via scat and live-trapping surveys. We reviewed the methods used and analysed the data produced with the aim of describing patterns of population change over time using a range of outcome variables and identifying different climate correlates. A secondary aim was to explore the use of population statistics that account for imperfect detection by comparing naïve occupancy, with an index of relative abundance based on trap effort, the latency to find scats during scat surveys and an occupancy model based on trapping surveys. Neither of these three methods accounts for detectability variation. Naïve occupancy decreased slightly over time, while the relative abundance based on trap effort revealed no evidence of change. Additionally, naïve occupancy decreased with increasing temperature while temperature had no clear impact on relative abundance. Finally, precipitation had no impact on either naïve occupancy or relative abundance. We found no evidence of a relationship between the latency to find scats and the index of relative abundance, suggesting that one or neither is related to actual abundance. Finally, a multi-season occupancy model found occupancy probability to be 0.78 ± 0.23 (standard error); detection probability as 0.51 ± 0.06; seasonal colonisation rate as 0.36 ± 0.13 and seasonal extinction rate at 0.44 ± 0.13. We conclude that despite significant investment in monitoring, this historical data set does not allow managers to ascertain whether population change has occurred and to identify potential drivers of change. Careful consideration of future methods, in particular, whether there is imperfect detection in scat surveys, will help to inform future monitoring.

Funding

ARC

LP200100261

History

Journal title

Ecological Management and Restoration

Volume

24

Issue

1

Pagination

47-55

Publisher

John Wiley & Sons

Language

  • en, English

College/Research Centre

College of Engineering, Science and Environment

School

School of Environmental and Life Sciences

Rights statement

© 2023 The Authors. Ecological Management & Restoration published by Ecological Society of Australia and John Wiley & Sons Australia, Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).