Open Research Newcastle
Browse

Application of kinetic models to the design of a calcite permeable reactive barrier (PRB) for fluoride remediation

Download (2.78 MB)
journal contribution
posted on 2025-05-09, 14:54 authored by Qianqian Cai, Brett D. Turner, Daichao Sheng, Scott Sloan
The kinetics of fluoride sorption by calcite in the presence of metal ions (Co, Mn, Cd and Ba) have been investigated and modelled using the intra-particle diffusion (IPD), pseudo-second order (PSO), and the Hill 4 and Hill 5 kinetic models. Model comparison using the Akaike Information Criterion (AIC), the Schwarz Bayseian Information Criterion (BIC) and the Bayes Factor allows direct comparison of model results irrespective of the number of model parameters. Information Criterion results indicate “very strong” evidence that the Hill 5 model was the best fitting model for all observed data due to its ability to fit sigmoidal data, with confidence contour analysis showing the model parameters were well constrained by the data. Kinetic results were used to determine the thickness of a calcite permeable reactive barrier required to achieve up to 99.9% fluoride removal at a groundwater flow of 0.1 m.day−1. Fluoride removal half-life (t0.5) values were found to increase in the order Ba ≈ stonedust (a 99% pure natural calcite) < Cd < Co < Mn. A barrier width of 0.97 ± 0.02 m was found to be required for the fluoride/calcite (stonedust) only system when using no factor of safety, whilst in the presence of Mn and Co, the width increased to 2.76 ± 0.28 and 19.83 ± 0.37 m respectively. In comparison, the PSO model predicted a required barrier thickness of ∼46.0, 62.6 & 50.3 m respectively for the fluoride/calcite, Mn and Co systems under the same conditions.

Funding

ARC

LP100200488

History

Journal title

Water Research

Volume

130

Pagination

300-311

Publisher

Elsevier

Language

  • en, English

College/Research Centre

Faculty of Engineering and Built Environment

School

School of Engineering

Rights statement

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC