Open Research Newcastle
Browse

An unusual abscisic acid and gibberellic acid synergism increases somatic embryogenesis, facilitates its genetic analysis and improves transformation in medicago truncatula

Download (1.2 MB)
journal contribution
posted on 2025-05-10, 09:51 authored by Kim NolanKim Nolan, Youhong Song, Siyang Liao, Nasir A. Saeed, Xiyi Zhang, Raymond RoseRaymond Rose
Somatic embryogenesis (SE) can be readily induced in leaf explants of the Jemalong 2HA genotype of the model legume Medicago truncatula by auxin and cytokinin, but rarely in wild-type Jemalong. Gibberellic acid (GA), a hormone not included in the medium, appears to act in Arabidopsis as a repressor of the embryonic state such that low ABA (abscisic acid): GA ratios will inhibit SE. It was important to evaluate the GA effect in M. truncatula in order to formulate generic SE mechanisms, given the Arabidopsis information. It was surprising to find that low ABA:GA ratios in M. truncatula acted synergistically to stimulate SE. The unusual synergism between GA and ABA in inducing SE has utility in improving SE for regeneration and transformation in M. truncatula. Expression of genes previously shown to be important in M. truncatula SE was not increased. In investigating genes previously studied in GA investigations of Arabidopsis SE, there was increased expression of GA2ox and decreased expression of PICKLE, a negative regulator of SE in Arabidopsis. We suggest that in M. truncatula there are different ABA:GA ratios required for down-regulating the PICKLE gene, a repressor of the embryonic state. In M. truncatula it is a low ABA:GA ratio while in Arabidopsis it is a high ABA:GA ratio. In different species the expression of key genes is probably related to differences in how the hormone networks optimise their expression.

Funding

ARC

CEO348212

History

Journal title

PLoS One

Volume

9

Issue

6

Publisher

Public Library of Science

Language

  • en, English

College/Research Centre

Faculty of Science and Information Technology

School

School of Environmental and Life Sciences

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC