Open Research Newcastle
Browse

An optimization-based approach to scheduling residential battery storage with solar PV: assessing customer benefit

Download (500.45 kB)
journal contribution
posted on 2025-05-11, 09:30 authored by Elizabeth L. Ratnam, Steven WellerSteven Weller, Christopher M. Kellett
Several studies have suggested that battery storage co-located with solar photovoltaics (PV) benefits electricity distributors in maintaining system voltages within acceptable limits. However, without careful coordination, these potential benefits might not be realized. In this paper we propose an optimization-based algorithm for the scheduling of residential battery storage co-located with solar PV, in the context of PV incentives such as feed-in tariffs. Our objective is to maximize the daily operational savings that accrue to customers, while penalizing large voltage swings stemming from reverse power flow and peak load. To achieve this objective we present a quadratic program (QP)-based algorithm. To complete our assessment of the customer benefit, the QP-based scheduling algorithm is applied to measured load and generation data from 145 residential customers located in an Australian distribution network. The results of this case study confirm the QP-based scheduling algorithm significantly penalizes reverse power flow and peak loads corresponding to peak time-of-use billing. In the context of feed-in tariffs, the majority of customers exhibited operational savings when QP energy-shifting.

History

Journal title

Renewable Energy

Volume

75

Pagination

123-134

Publisher

Pergamon Press

Language

  • en, English

College/Research Centre

Faculty of Engineering and Built Environment

School

School of Electrical Engineering and Computer Science

Usage metrics

    Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC