Open Research Newcastle
Browse

Advances in bioorganic molecules inspired degradation and surface modifications on Mg and its alloys

Download (8.09 MB)
journal contribution
posted on 2025-05-09, 19:44 authored by Lei Cai, Di Mei, Zhao-Qi Zhang, Yuan-ding Huang, Lan-Yue Cui, Shao-Kang Guan, Dong-Chu Chen, M. Bobby Kannan, Yu-feng Zheng, Rong-Chang Zeng
Mg alloys possess biodegradability, suitable mechanical properties, and biocompatibility, which make them possible to be used as biodegradable implants. However, the uncontrollable degradation of Mg alloys limits their general applications. In addition to the factors from the metallic materials themselves, like alloy compositions, heat treatment process and microstructure, some external factors, relating to the test/service environment, also affect the degradation rate of Mg alloys, such as inorganic salts, bioorganic small molecules, bioorganic macromolecules. The influence of bioorganic molecules on Mg corrosion and its protection has attracted more and more attentions. In this work, the cutting-edge advances in the influence of bioorganic molecules (i.e., protein, glucose, amino acids, vitamins and polypeptide) and their coupling effect on Mg degradation and the formation of protection coatings were reviewed. The research orientations of biomedical Mg alloys in exploring degradation mechanisms in vitro were proposed, and the impact of bioorganic molecules on the protective approaches were also explored.

History

Journal title

Journal of Magnesium and Alloys

Volume

10

Issue

3

Pagination

670-688

Publisher

KeAi Publishing Communications

Language

  • en, English

College/Research Centre

College of Engineering, Science and Environment

School

School of Engineering

Rights statement

© 2022 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC