Open Research Newcastle
Browse

Advanced diagnosis of rotor faults and eccentricity in induction motors based on internal flux measurement

Download (16.42 MB)
journal contribution
posted on 2025-05-08, 20:54 authored by Galina MirzaevaGalina Mirzaeva, Khalid Imtiaz Saad
Most of the existing electrical techniques of condition monitoring and fault diagnosis are based on frequency analysis of signals measured externally to the motor. In this paper, it is proposed to add the space dimension to the measured signals by using an array of Hall effect flux sensors installed inside the motor air gap, and to explore the advantages brought by such an instrumentation. The paper presents analytical models of air gap flux density expressed in terms of time and space, for a healthy motor and for a motor with rotor bar faults and mixed eccentricity. Based on these models, the paper proposes a new technique for early detection of rotor bar faults and mixed eccentricity, and for discrimination between them. The paper demonstrates that, with the help of the proposed technique, the severity of each fault and its location relative to rotor or stator can be accurately established. The results of the presented study are supported by simulations and validated by experiments on a laboratory scale induction motor. The formulated fault diagnosis algorithm is suitable for real-time implementation.

History

Journal title

IEEE Transactions on Industry Applications

Volume

54

Issue

3

Pagination

2981-2991

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Language

  • en, English

College/Research Centre

Faculty of Engineering and Built Environment

School

School of Electrical Engineering and Computer Science

Rights statement

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC