Open Research Newcastle
Browse

Activity-based analysis of potentiometric pH titrations

Download (8.12 MB)
journal contribution
posted on 2025-05-09, 16:28 authored by Somaiyeh K. Karimvand, Anh N. Xuan, Hamid Abdollahi, Robert BurnsRobert Burns, Sarah Clifford, Marcel MaederMarcel Maeder, Nichola McCann, Yorck-Michael Neuhold, Graeme Puxty
The discrepancy between concentrations and activities is a predicament well known to the analytical chemist. Because of the difficulty of determining activity coefficients, the standard technique for quantitative equilibrium studies is to work under a particular ‘constant ionic strength’ by adding an excess of an inert salt. Under such conditions, activity coefficients are approximately constant and can be taken into the equilibrium constants which are defined for the chosen ionic strength (I). Here we propose a fundamentally different approach. Throughout the numerical analysis of the titration data, activity coefficients for all individual species are approximated by well-known equations based on the work of Debye-Hückel. The computational analysis of the measurements strictly obeys the law of mass conservation and obeys the law of mass action only approximately. The main novelty is that now the addition of inert salts is no longer required and measurements are done at minimal I. Consequently, the thermodynamic equilibrium constants are now determined much more robustly based on experiments taken at low I. The approach has been tested and validated with the two very well investigated 3-protic phosphoric and citric acids. In summary: the technique of artificially keeping ionic strength constant has been replaced by improved computational analysis.

History

Journal title

Analytica Chimica Acta

Volume

1075

Pagination

49-56

Publisher

Elsevier

Language

  • en, English

College/Research Centre

Faculty of Science

School

School of Environmental and Life Sciences

Rights statement

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC