For infrastructure applications in marine environments, the eventual initiation of corrosion (and pitting) of steels (and other metals and alloys) often is assumed an inescapable fact, and practical interest then centres on the rate at which corrosion damage is likely to occur in the future. This demands models with a reasonable degree of accuracy, preferably anchored in corrosion theory and calibrated to actual observations under realistic exposure conditions. Recent developments in the understanding of the development of corrosion loss and of maximum pit depth in particular are reviewed in light of modern techniques that permit much closer examination of pitted and corroded surfaces. From these observations, and from sometimes forgotten or ignored observations in the literature, it is proposed that pitting (and crevice corrosion) plays an important role in the overall corrosion process, but that longer term pitting behaviour is considerably more complex than usually considered. In turn, this explains much of the, often high, variability in maximum depths of pits observed at any point in time. The practical implications are outlined.
Funding
ARC
DP140103388
History
Journal title
Corrosion and Materials Degradation
Volume
1
Issue
1
Pagination
42-58
Publisher
MDPI AG
Language
en, English
College/Research Centre
Faculty of Engineering and Built Environment
School
Centre for Infrastructure, Performance and Reliability