Open Research Newcastle
Browse

A gauge invariant uniqueness theorem for corners of higher rank graph algebras

Download (347.71 kB)
journal contribution
posted on 2025-05-09, 18:53 authored by Stephen Allen
For a finitely aligned k-graph Λ with X a set of vertices in Λ, we define a universal C*-algebra called C* (Λ, X) generated by partial isometries. We show that C* (Λ, X) is isomorphic to the corner PXC*(Λ) PX, where PX is the sum of vertex projections in X. We then prove a version of the Gauge Invariant Uniqueness theorem for C*(Λ, X) and then use the theorem to prove various results involving fullness, simplicity and Morita equivalence as well as results relating to application in symbolic dynamics.

History

Journal title

Rocky Mountain Journal of Mathematics

Volume

38

Issue

6

Pagination

1887-1907

Publisher

Rocky Mountain Mathematics Consortium

Language

  • en, English

College/Research Centre

Faculty of Science and Information Technology

School

School of Mathematical and Physical Sciences

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC