Open Research Newcastle
Browse

A distributed energy-harvesting-aware routing algorithm for heterogeneous IoT networks

Download (1.41 MB)
journal contribution
posted on 2025-05-11, 15:36 authored by Thien Duc Nguyen, Jamil Yusuf Khan, Duy NgoDuy Ngo
Energy harvesting (EH) is considered the key enabling technology for mass deployment of Internet-of-Things (IoT) devices. Efficient EH techniques eliminate the needs for frequent energy source replacement, thus offering a near perpetual network operating environment. Advances in the EH techniques have shifted the design paradigm of routing protocols for energy-harvesting wireless sensor network based IoT applications from "energy-aware" to "energy-harvesting-aware". This paper aims to design an energy-harvesting-aware routing protocol for heterogeneous IoT networks in the presence of ambient energy sources. We propose a new routing algorithm energy-harvesting-aware routing algorithm (EHARA), which is further enhanced by integrating a new parameter called "energy back-off". Combining with different energy harvesting techniques, the proposed algorithm improves the lifetime of the nodes and the network's quality-of-service (QoS) under variable traffic load and energy availability conditions. This work also investigates the system performance metrics for different energy harvesting conditions. Performance results demonstrate that the proposed EHARA significantly improves energy efficiency while satisfying the QoS requirements of distributed IoT networks in comparison with existing routing protocols.

History

Journal title

IEEE Transactions on Green Communications and Networking

Volume

2

Issue

4

Pagination

1115-1127

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Language

  • en, English

College/Research Centre

Faculty of Engineering and Built Environment

School

School of Electrical Engineering and Computer Science

Rights statement

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC