posted on 2025-05-08, 20:41authored byWadim Zudilin
It is a classical fact that the irrationality of a number ξ∈R follows from the existence of a sequence pn/qn with integral pn and qn such that qnξ−pn≠0 for all n and qnξ−pn→0 as n→∞. In this paper, we give an extension of this criterion in the case when the sequence possesses an additional structure; in particular, the requirement qnξ−pn→0 is weakened. Some applications are given, including a new proof of the irrationality of π. Finally, we discuss analytical obstructions to extend the new irrationality criterion further and speculate about some mathematical constants whose irrationality is still to be established.
Funding
ARC
DP170100466
History
Journal title
Constructive Approximation
Volume
45
Issue
2
Pagination
301-310
Publisher
Springer
Language
en, English
College/Research Centre
Faculty of Science
School
School of Mathematical and Physical Sciences
Rights statement
This is a post-peer-review, pre-copyedit version of an article published in Constructive Approximation. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00365-016-9333-7.