Open Research Newcastle
Browse

A conceptually simple derivation of the Kelvin equation (short communication)

journal contribution
posted on 2025-05-12, 10:44 authored by Kevin GalvinKevin Galvin
This note provides a conceptually simple derivation of the Kelvin equation, based on the principles of hydrostatics, rather than the more elegant and abstract thermodynamic approach of equating the chemical potential of each of the phases. With the new derivation, the physical picture of a drop in equilibrium with its own vapour is more readily appreciated, and hence the basis of the Kelvin equation more easily understood by those less skilled in the science of thermodynamics. In turn, a number of the potential limitations [Powles, 1985. Journal of Physics A Mathematical and General 18, 1551-1560] of the Kelvin equation become physically obvious, notably the assumption that the liquid is incompressible, the vapour is an ideal gas, and the interfacial tension is independent of the curvature of the interface. In turn, appropriate corrections can easily be introduced as required. (c) 2005 Elsevier Ltd. All rights reserved.

History

Journal title

Chemical Engineering Science

Volume

60

Pagination

4659-4660

Article number

16

Publisher

Elsevier

Language

  • en, English

Usage metrics

    Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC