Open Research Newcastle
Browse

A comparative analysis of active learning for biomedical text mining

Download (1.14 MB)
journal contribution
posted on 2025-05-10, 18:41 authored by Usman Naseem, Matloob Khushi, Shah Khalid Khan, Kamran Shaukat, Mohammad Ali Moni
An enormous amount of clinical free-text information, such as pathology reports, progress reports, clinical notes and discharge summaries have been collected at hospitals and medical care clinics. These data provide an opportunity of developing many useful machine learning applications if the data could be transferred into a learn-able structure with appropriate labels for supervised learning. The annotation of this data has to be performed by qualified clinical experts, hence, limiting the use of this data due to the high cost of annotation. An underutilised technique of machine learning that can label new data called active learning (AL) is a promising candidate to address the high cost of the label the data. AL has been successfully applied to labelling speech recognition and text classification, however, there is a lack of literature investigating its use for clinical purposes. We performed a comparative investigation of various AL techniques using ML and deep learning (DL)-based strategies on three unique biomedical datasets. We investigated random sampling (RS), least confidence (LC), informative diversity and density (IDD), margin and maximum representativeness-diversity (MRD) AL query strategies. Our experiments show that AL has the potential to significantly reducing the cost of manual labelling. Furthermore, pre-labelling performed using AL expediates the labelling process by reducing the time required for labelling.

History

Journal title

Applied System Innovation

Volume

4

Issue

1

Article number

23

Publisher

MDPI AG

Language

  • en, English

College/Research Centre

College of Engineering, Science and Environment

School

School of Electrical Engineering and Computer Science

Rights statement

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Usage metrics

    Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC