Open Research Newcastle
Browse

A chain rule for essentially smooth Lipschitz functions

Download (284.89 kB)
journal contribution
posted on 2025-05-11, 07:51 authored by Jonathan M. Borwein, Warren B. Moors
In this paper we introduce a new class of real-valued locally Lipschitz functions (that are similar in nature and definition to Valadier's saine functions), which we call arcwise essentially smooth, and we show that if g : Rm → R is arcwise essentially smooth on Rm and each function fj : R^n → R, 1 ≤ j ≤ m, is strictly differentiable almost everywhere in Rn, then g ○ f is strictly differentiable almost everywhere in Rn, where f ≡ (f₁,f₂,...,fm). We also show that all the semismooth and all the pseudoregular functions are arcwise essentially smooth. Thus, we provide a large and robust lattice algebra of Lipschitz functions whose generalized derivatives are well behaved.

History

Journal title

SIAM Journal on Optimization

Volume

8

Issue

2

Pagination

300-308

Publisher

Society for Industrial and Applied Mathematics (SIAM)

Language

  • en, English

College/Research Centre

Faculty of Science and Information Technology

School

School of Mathematical and Physical Sciences

Usage metrics

    Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC