posted on 2025-05-11, 07:51authored byJonathan M. Borwein, Warren B. Moors
In this paper we introduce a new class of real-valued locally Lipschitz functions (that are similar in nature and definition to Valadier's saine functions), which we call arcwise essentially smooth, and we show that if g : Rm → R is arcwise essentially smooth on Rm and each function fj : R^n → R, 1 ≤ j ≤ m, is strictly differentiable almost everywhere in Rn, then g ○ f is strictly differentiable almost everywhere in Rn, where f ≡ (f₁,f₂,...,fm). We also show that all the semismooth and all the pseudoregular functions are arcwise essentially smooth. Thus, we provide a large and robust lattice algebra of Lipschitz functions whose generalized derivatives are well behaved.
History
Journal title
SIAM Journal on Optimization
Volume
8
Issue
2
Pagination
300-308
Publisher
Society for Industrial and Applied Mathematics (SIAM)