Open Research Newcastle
Browse

A New Approach to Turbostratic Carbon Production Via Thermal Salt-Assisted Treatment of Graphite

Download (12.83 MB)
journal contribution
posted on 2025-05-09, 02:42 authored by Tahereh Jalalabadi, Jimmy Wu, Behdad MoghtaderiBehdad Moghtaderi, Neeraj Sharma, Jessica AllenJessica Allen
Here graphite was found to undergo carbon/carbonate gasification at 800 °C, resulting in exfoliation of graphite to form turbostratic carbon. The lattice distance of graphene sheets in graphite are shown to undergo marked changes following treatment with molten ternary eutectic carbonate (Li2CO3: 43.5%, Na2CO3: 31.5%, K2CO3: 25%) during slow temperature ramping rates (5 °C/min) under N2 at temperatures above 750 °C. Initial findings suggest that approximately 50 wt% of graphite experiences interlayer expansion. The conventional d spacing of 0.34 nm is modified to a range of intervals between 0.41 nm and 1.22 nm. As a consequence of high operational temperature (800 °C), cations (Li+, Na+ and K+) as well as potentially the anion (CO32–) intercalate between graphitic layers and overcome Van der Waal force between layers. Employing a pressurized N2 environment of 5 bar and 10 bar successfully controls carbonate vaporization and decomposition, as well as inducing ordered layer manipulation to exfoliate more graphite planes from the edges towards deeper levels of the particles. Exploring parameters of both carbonate loading and treatment time in addition to pressure demonstrate that this work opens up a rich selection of parameters that can be used to produce carbons with tuned properties from graphite.

Funding

ARC

DE210100680

History

Journal title

Fuel

Volume

348

Issue

15 September 2023

Article number

128489

Publisher

Elsevier

Language

  • en, English

College/Research Centre

College of Engineering, Science and Environment

School

School of Engineering

Rights statement

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by- nc-nd/4.0/).

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC