Open Research Newcastle
Browse

A Critical Review of Climate Change Impacts on Groundwater Resources: A Focus on the Current Status, Future Possibilities, and Role of Simulation Models

Download (2.87 MB)
journal contribution
posted on 2025-05-09, 03:30 authored by Veeraswamy Davamani, Joseph Ezra John, Chidamparam Poornachandhra, Boopathi Gopalakrishnan, Subramanian Arulmani, Ettiyagounder Parameswari, Anandhi Santhosh, Asadi Srinivasulu, Alvin LalAlvin Lal, Ravendra NaiduRavendra Naidu
The Earth’s water resources, totalling 1.386 billion cubic kilometres, predominantly consist of saltwater in oceans. Groundwater plays a pivotal role, with 99% of usable freshwater supporting 1.5–3 billion people as a drinking water source and 60–70% for irrigation. Climate change, with temperature increases and altered precipitation patterns, directly impacts groundwater systems, affecting recharge, discharge, and temperature. Hydrological models are crucial for assessing climate change effects on groundwater, aiding in management decisions. Advanced hydrological models, incorporating data assimilation and improved process representation, contribute to understanding complex systems. Recent studies employ numerical models to assess climate change impacts on groundwater recharge that could help in the management of groundwater. Groundwater vulnerability assessments vary with the spatial and temporal considerations, as well as assumptions in modelling groundwater susceptibility. This review assesses the vulnerability of groundwater to climate change and stresses the importance of accurate assessments for sustainable water resource management. It highlights challenges in assumptions related to soil and aquifer properties, multiple stressors, adaptive capacity, topography and groundwater contamination processes, gradual sea level rise scenarios, and realistic representations of the region of study. With the advancements in hydrological modelling, including the integration of uncertainty quantification and remote sensing data, artificial intelligence could assist in the efforts to improve models for assessing the impacts of climate change on hydrological modelling.

History

Journal title

Atmosphere

Volume

15

Issue

1

Article number

122

Publisher

MDPI AG

Language

  • en, English

College/Research Centre

College of Engineering, Science and Environment

School

Global Centre for Environmental Remediation (GCER)

Rights statement

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC