Open Research Newcastle
Browse

APC FZR1 prevents nondisjunction in mouse oocytes by controlling meiotic spindle assembly timing

Download (3.78 MB)
journal contribution
posted on 2025-05-09, 10:25 authored by Jane E. Holt, Simon I. R. Lane, Phoebe Jennings, Irene Garcia-Higuera, Sergio Moreno, Keith T. Jones
FZR1 is an anaphase-promoting complex (APC) activator best known for its role in the mitotic cell cycle at M-phase exit, in G1, and in maintaining genome integrity. Previous studies also established that it prevents meiotic resumption, equivalent to the G2/M transition. Here we report that mouse oocytes lacking FZR1 undergo passage through meiosis I that is accelerated by ∼1 h, and this is due to an earlier onset of spindle assembly checkpoint (SAC) satisfaction and APCCDC20 activity. However, loss of FZR1 did not compromise SAC functionality; instead, earlier SAC satisfaction was achieved because the bipolar meiotic spindle was assembled more quickly in the absence of FZR1. This novel regulation of spindle assembly by FZR1 led to premature bivalent attachment to microtubules and loss of kinetochore-bound MAD2. Bivalents, however, were observed to congress poorly, leading to nondisjunction rates of 25%. We conclude that in mouse oocytes FZR1 controls the timing of assembly of the bipolar spindle and in so doing the timing of SAC satisfaction and APCCDC20 activity. This study implicates FZR1 as a major regulator of prometaphase whose activity helps to prevent chromosome nondisjunction.

Funding

ARC

DP1101100418

History

Journal title

Molecular Biology of the Cell

Volume

23

Issue

20

Pagination

3970-3981

Publisher

American Society for Cell Biology

Language

  • en, English

College/Research Centre

Faculty of Health and Medicine

School

School of Biomedical Sciences and Pharmacy

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC