Manifold learning can only be successful if enough data is available. If the data is too sparse, the geometrical and topological structure of the manifold extracted from the data cannot be recognised and the manifold collapses. In this paper we used data from a simulated two-dimensional double pendulum and tested how well several manifold learning methods could extract the expected manifold, a two-dimensional torus. The experiments were repeated while the data was down sampled in several ways to test the robustness of the different manifold learning methods. We also developed a neural network-based deep autoencoder for manifold learning and demonstrated that it performed in most of our test cases similarly or better than traditional methods such as principal component analysis and isomap.
History
Source title
2019 International Joint Conference on Neural Networks (IJCNN)
Name of conference
2019 International Joint Conference on Neural Networks (IJCNN)
Location
Budapest, Hungary
Start date
2019-07-14
End date
2019-07-19
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Place published
Piscataway, NJ
Language
en, English
College/Research Centre
Faculty of Engineering and Built Environment
School
School of Electrical Engineering and Computer Science