We study a networked control architecture where wireless sensors are used to measure and transmit plant outputs to a remote controller. Packet loss probabilities depend upon the time-varying communication channel gains and the transmission powers of the sensors. Within this context, we develop a centralized stochastic nonlinear model predictive controller. It determines the sensor power levels by trading energy expenditure for expected plant state variance. To further preserve sensor energies, the power controller sends coarsely quantized power increment commands only when necessary. Simulations on measured channel data illustrate the performance achieved by the proposed controller.
History
Source title
Proceedings of the International Workshop on Assessment and Future Directions of Nonlinear Model Predictive Control
Name of conference
International Workshop on Assessment and Future Directions of Nonlinear Model Predictive Control (NMPC '08)
Location
Pavia, Italy
Start date
2008-09-05
End date
2008-09-09
Publisher
NMPC '08
Place published
Pavia, Italy
Language
en, English
College/Research Centre
Faculty of Engineering and Built Environment
School
School of Electrical Engineering and Computer Science