Open Research Newcastle
Browse

Predictive allocation of resources in the LTE uplink based on maximum likelihood estimation of event propagation characteristics for M2M applications

Download (670 kB)
conference contribution
posted on 2025-05-11, 12:33 authored by Jason Brown, Jamil Y. Khan
We propose a predictive resource allocation scheme for the LTE uplink based upon Maximum Likelihood Estimation of event propagation characteristics for M2M/Smart Grid applications. The LTE eNodeB estimates the inter-sensor propagation time of a disturbance using the pattern and timing of received Scheduling Requests (SRs) from sensors and then proceeds to predict the time at which the disturbance will reach downstream sensors, facilitating predictive uplink grants for these sensors in order to reduce the mean latency of their uplink data packets by up to 50% (according to a performance analysis) compared to the existing standard reactive LTE uplink resource allocation scheme. A further benefit is that when a predictive resource allocation is successful, the sensor does not need to send an SR, thereby freeing up uplink resources which can be critical with M2M communications. We consider various transition strategies from the estimation to prediction phases which reflect the compromise between estimation speed and accuracy, and also examine the concept of early and late prediction.

Funding

ARC

LP110100254

History

Source title

Proceedings of the 2014 IEEE Global Communications Conference (GLOBECOM)

Name of conference

2014 IEEE Global Communications Conference (GLOBECOM)

Location

Austin, TX

Start date

2014-12-08

End date

2014-12-12

Pagination

4965-4970

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Place published

Piscataway, NJ

Language

  • en, English

College/Research Centre

Faculty of Engineering and Built Environment

School

School of Electrical Engineering and Computer Science

Rights statement

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC