We present a fast flexure-based, piezoelectric stack-actuated XY nanopositioning stage which is suitable for high-speed, accurate nanoscale positioning applications. The performance of the design are analyzed using finite-element-analysis software. Experiments demonstrate that the design has a high first resonant mode at 2.7 kHz, a low cross-coupling of -35 dB and a relatively large traveling range of 25x25 mum. These results are in close agreement with the predicted FEA results. Non-linearities due to hysteresis of the piezoelectric stack actuators are present in the stage. The hysteresis effect is minimized using charge actuation. The Integral Resonant Control (IRC) method is applied to damp the first resonant mode. By implementing feedforward inversion technique, high-speed and accurate scanning performances, up to 400 Hz, are achieved.
History
Source title
Proceedings of the 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
Name of conference
2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
Location
Xi'an, China
Start date
2008-07-02
End date
2008-07-05
Pagination
451-456
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Place published
Piscataway, NJ
Language
en, English
College/Research Centre
Faculty of Engineering and Built Environment
School
School of Electrical Engineering and Computer Science