This paper presents novel results on scalar feedback quantization (SFQ) with uniform quantizers. We focus on general SFQ configurations where reconstruction is via a linear combination of frame vectors. Using a deterministic approach, we derive two necessary and sufficient conditions for SFQ to be optimal, i.e., to produce, for every input, a quantized sequence that is a global minimizer of the 2-norm of the reconstruction error. The first optimality condition is related to the design of the feedback quantizer, and can always be achieved. The second condition depends only on the reconstruction vectors, and is given explicitly in terms of the Gram matrix of the reconstruction frame. As a by-product, we also show that the the first condition alone characterizes scalar feedback quantizers that yield the smallest MSE, when one models quantization noise as uncorrelated, identically distributed random variables.
History
Source title
Proceedings of the 2008 International Conference on Acoustics, Speech and Signal Processing
Name of conference
2008 International Conference on Acoustics, Speech and Signal Processing
Location
Las Vegas, NV
Start date
2008-03-31
End date
2008-04-04
Pagination
3749-3752
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Place published
Piscataway, NJ
Language
en, English
College/Research Centre
Faculty of Engineering and Built Environment
School
School of Electrical Engineering and Computer Science