Flexure hinges are commonly used in many applications which require precise and smooth motions in the nanometer scale. There were various formulations derived using different methods to calculate the stiffness of circular flexure hinges. This article compares these equations with FEA predictions. The limitation of these equations at different t/R (R is the radius and t is the neck thickness) ratios are revealed. Based on the limitations of these design equations, a guideline to select the most accurate equations for hinge design calculations is presented. In addition to the review and comparisons, general empirical stiffness equations in the x- and y-direction were formulated in this study (with errors less than 3% when compared to FEA simulations) for a wide range of t/R ratios (0.05 les t/R les 0.8).
History
Source title
Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics 2009
Name of conference
2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
Location
Singapore
Start date
2009-07-14
End date
2009-07-17
Pagination
510-515
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Place published
Piscataway, NJ
Language
en, English
College/Research Centre
Faculty of Engineering and Built Environment
School
School of Electrical Engineering and Computer Science