Open Research Newcastle
Browse

Achieving high-bandwidth nanopositioning in presence of plant uncertainties

Download (528.33 kB)
conference contribution
posted on 2025-05-09, 04:57 authored by Sumeet S. Aphale, Santosh Devasia, S. O. Reza Moheimani
In the absence of plant parameter uncertainties, inversion-based feedforward techniques have been known to deliver accurate tracking performance. Due to changes in operating conditions like ambient temperature, humidity and loading, piezoelectric-stack actuated nanopositioning platforms can undergo significant changes in their system parameters. Nonlinear effects of hysteresis, an inherent property of a piezoelectric actuator, are also present; charge actuation is applied to reduce the effects of hysteresis. In this work, a suitable feedback controller that reduces the effects of parameter uncertainties is integrated with the inversion-based feedforward technique to deliver accurate nanopositioning over a large bandwidth. It is shown experimentally that by integrating closed-loop damping, inversion-based feedforward and charge actuation, the tracking bandwidth of the platform from can be increased significantly from 310 Hz to 1320 Hz.

History

Source title

Proceedings of the 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics

Name of conference

2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics

Location

Xi'an, China

Start date

2008-07-02

End date

2008-07-05

Pagination

943-948

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Place published

Piscataway, NJ

Language

  • en, English

College/Research Centre

Faculty of Engineering and Built Environment

School

School of Electrical Engineering and Computer Science

Rights statement

Copyright © 2008 IEEE. Reprinted from the 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Newcastle's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC