We present part of our work on the capacity upper bound, achievable rates, and scheduling for the half duplex multiple-relay channel (HD MRC) where every node can either transmit or listen, but not both, at any time. We derive a capacity upper bound based on the cut-set argument, and achievable rates based on the decode-forward coding strategy (DF). We discover that the upper bound and achievable rates are functions of the transmit state vector (a description of which nodes transmit and which receive). More precisely, they are functions of the time fraction of different transmit state vectors, which we term a schedule. We formulate the optimal scheduling problem to find the best schedule, one that maximizes the DF rate. For the phase fading HD MRC, surprisingly, we show that the expressions for the capacity upper bound and for DF rate can be transformed into linear programming problems.
History
Source title
Proceedings of the International Symposium on Information Theory and Its Applications, ISITA 2008
Name of conference
International Symposium on Information Theory and Its Applications, 2008 (ISITA 2008)
Location
Auckland, New Zealand
Start date
2008-12-07
End date
2008-12-10
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Place published
Piscataway, NJ
Language
en, English
College/Research Centre
Faculty of Engineering and Built Environment
School
School of Electrical Engineering and Computer Science